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Abstract
Current research in speech-to-speech translation (S2ST) primar-
ily concentrates on translation accuracy and speech naturalness,
often overlooking key elements like paralinguistic information,
which is vital for conveying emotions and attitudes in human
communication. This oversight is particularly significant in ap-
plications requiring expressive speech, such as video dubbing.
To remedy these gaps, our research introduces a novel, meticu-
lously assembled multilingual dataset from various movie audio
tracks. Each dataset pair is carefully matched for paralinguis-
tic content and duration. We enhance this approach by inte-
grating multiple prosody transfer techniques, aiming for trans-
lations that are not only accurate and natural-sounding but also
rich in paralinguistic detail. Our experimental results confirm
that our model successfully retains more paralinguistic infor-
mation from the source speech while upholding high standards
of translation accuracy and naturalness.
Index Terms: Expressive speech-to-speech translation, con-
trollable text-to-speech, prosody transfer

1. Introduction
Speech-to-speech translation (S2ST) enables the translation of
spoken language into another spoken language, significantly en-
hancing communication between different language speakers.
Traditional S2ST systems [1, 2, 3] rely on a pipeline of au-
tomatic speech recognition (ASR), machine translation (MT),
or speech-to-text translation (S2T), followed by text-to-speech
synthesis (TTS). While speech translation traditionally involves
converting speech to text or vice versa in different languages,
recent developments have shifted towards an end-to-end S2ST
system [4, 5, 6, 7, 8]. These systems minimize error propagation
between ASR and MT, resulting in a streamlined process with
reduced computational costs, particularly advantageous for lan-
guages without a written form.

In the realm of expressive speech-to-speech translation
(S2ST) [9, 5, 10, 3, 11], some research focuses on intonation
transfer, utilizing statistical word alignment to transfer source
intonation characteristics to the target language. Many meth-
ods [12, 13, 14] evolved to include word emphasis transfer, ul-
timately leading to sequence-to-sequence models for simulta-
neous emphasis and content translation. Despite the progress,
these approaches only focused on individual expression ele-
ments and did not fully capture the emotional aspects of speech.

However, a notable challenge in direct S2ST, especially
with style transfer, is the scarcity of paired data where the
source and target speech have the same speaker. There are
some works [15, 16] developing methods to utilize non-parallel
data. However, they lack ground truth for human evaluation,
limiting further study. To address this, we introduce a novel,

carefully curated multilingual dataset from diverse movie au-
dio tracks. This dataset, primarily consisting of paired Spanish-
English data from clear, emotionally rich dialogues in movies
and TV shows, offers a unique opportunity to capture nuanced
emotional variations often missed in standard speech synthesis
data.

To extract fine-grained emotional information from these
paired datasets, we propose a model structure that learns both
global style features and local pitch features, recognizing that
discrete speech representations may lose some information. In
our acoustic unit modelling, we introduce a direct S2ST model
that translates between languages without intermediate text,
leveraging self-supervised learning representations. Our ap-
proach differs by simultaneously integrating multiple expres-
sive aspects, representing a significant advancement in S2ST.
This methodology facilitates real-time improvements and en-
sures duration alignment without relying on text intermediaries.

Our contributions are as follows:
• We introduce the first dataset designed for training paired

speech emotion translation from movies and TV shows with
multiple audio tracks.

• We propose a novel approach to direct S2ST with style trans-
fer, integrating pitch and global style transferring. This
method preserves intricate emotional characteristics without
the need for text as an intermediary while maintaining trans-
lation accuracy.

• Our experiments demonstrate that our method produces high-
quality translations while maintaining stylistic fidelity to the
source speech.

Figure 1: Direct speech-to-speech translation system compared
with cascaded speech-to-speech translation system

2. Movie Dataset
In this section, we detail the construction and processing of
the movie dataset, which is crucial for advancing research in
speech-to-speech translation between English and Spanish and
sets the stage for future research in producing emotionally
paired multilingual speech datasets.



2.1. Dataset Source

Our dataset, a substantial collection of approximately 300 hours
of paired English-Spanish television series and movie audio, is
carefully curated to facilitate advanced translation model de-
velopment. Our dataset comprises content from the following
sources: “Money Heist” seasons 1-5, “Elite” seasons 1-4, 59
Disney movies, “Dragon Ball Z”, 24 “James Bond” Collec-
tion movies, 10 superhero series movies, “Shrek” movies 1-
4, “Harry Potter” movies 1-8, and “Poltergeist” movies 1-3.
These videos contain both English and Spanish audio tracks,
and the diligent dubbing by actors ensures alignment of emotion
and timing. Our dataset maintains gender consistency between
English actors and their Spanish dubbing counterparts. This
uniformity ensures standardization, which is critical for voice
recognition and translation models.

2.2. Dataset Construction

We initiate our dataset construction by converting subtitle SRT
files into more structured CSV files. This conversion process
was enhanced with sophisticated filtering rules aimed at elim-
inating irrelevant or inconsistent data. Additionally, we merge
continuous sentences from the same speaker using [17] to con-
firm speaker consistency, consolidating them into a single data
point. This enhances dataset coherence and contextual rele-
vance, crucial for training models on realistic dialogue patterns
and maintaining narrative continuity.

Next, we subject all audio files to a denoising process using
a noise suppression library1 based on a recurrent neural net-
work, significantly improving audio clarity. This clarity is vital
for the subsequent step of automatic speech recognition (ASR)
using Azure2, as cleaner audio leads to more accurate tran-
scription. We select segments where the ASR output is closely
aligned with the subtitles, choosing the top 80% of segments
with a word error rate more significant than 0.6 to ensure dataset
accuracy. Additionally, we carefully filter segments based on
appropriate sentence lengths, optimizing the dataset for practi-
cal training while maintaining contextual richness. Specifically,
we exclude segments shorter than 3 seconds or longer than 15
seconds. All audio is processed at the sampling rate of 16000.

The dataset was further enriched by extracting speaker
(Spk) embeddings from the sentences and calculating the co-
sine similarities for these embeddings. These embeddings and
their corresponding cosine similarities were systematically or-
ganized and saved in specific files. This organization not only
enhances the accessibility of the data but also provides a rich
source for analyzing and comparing vocal features across lan-
guages.

2.3. Dataset analysis

Additionally, we analyze the English audio segments. This in-
volved matching English segments with corresponding Span-
ish segments within the same TV show, ensuring consistency
in contextual and emotional content. We prioritize segments
where the cosine similarity between the matched English and
Spanish audio was below 0.5, ensuring diversity in the dataset
that challenges and thus strengthens the robustness of the trans-
lation models. Furthermore, we impose a criterion that only lists
at least five remaining segments that would be saved, ensuring
a meaningful sample size for model training.

1https://github.com/xiph/rnnoise
2https://azure.microsoft.com/en-us/products/ai-services/ai-speech

Figure 2: This is the length Distribution of the Utterances, and
the yellow ones denote the utterances that have a word error
rate under 40%. There are 12610 utterances in total. The
maximum duration is 244.250s, while the minimum duration is
0.833s. The average duration of utterances is 5.096s.

By ensuring gender consistency, enhancing audio quality,
meticulously matching segments, and enriching the dataset with
detailed speaker embeddings and cosine similarity analyses, we
provide a comprehensive and robust foundation for developing
advanced translation models.

3. Method
To extract fine-grained emotional information from these paired
datasets, we develop a model to transfer the emotion of the
reference speech. Our S2ST system comprises three compo-
nents. Initially, speech from one language is converted into
discrete units for direct speech-to-speech translation. Subse-
quently, speaker identification is extracted from the speech. Il-
lustrated in Figure 3, we introduce a unit-hifigan-based emotion
transfer model, where speech in the target language, enriched
with the appropriate emotions, is synthesized.

3.1. Obtain discrete Units

In the first stage, we extract discrete units using a process in-
spired by the HuBERT [18] framework as in [5], which em-
ploys self-supervised learning techniques for speech representa-
tion. HuBERT leverages K-means clustering on its intermediate
representations or Mel-frequency cepstral coefficient (MFCC)
features [19] in the initial iteration to categorize masked au-
dio segments into discrete labels. By pre-training a HuBERT
model on an unlabelled speech corpus in the target language,
we can encode target speech into continuous representations for
every 20ms frame. Subsequently, a K-means algorithm is ap-
plied to these representations to generate K cluster centroids.
These centroids are instrumental in encoding target utterances
into sequences of cluster indices at the same 20ms interval.

In our implementation, the target speech is encoded into a
vocabulary of 1000 discrete units. The models for HuBERT
and K-means are derived from a combination of unlabeled En-
glish, Spanish, and French speech data sourced from the Vox-
Populi [20] corpus. Our focus is solely on encoding English and
Spanish target speech.

The second phase involves processing the discrete units ob-
tained from the first phase. Due to the high length of the original
unit, we follow [5] to adopt a strategy to condense continuous
repetitions of the same unit into a single unit. This approach not



only streamlines the dataset but also aids in reducing computa-
tional complexity. In the third and final phase, these condensed
units are expanded back to their original form during the Unit-
to-Waveform conversion process.

3.2. Get speaker ID

In our methodology, a critical step is the enhancement of our
dataset through the extraction of speaker embeddings from each
utterance. These embeddings capture the unique vocal charac-
teristics of the speakers, which are crucial for our analysis. To
further enrich this data, we compute the cosine similarities (cos
sim) between these embeddings. This computation serves as a
measure of similarity between different vocal features, facilitat-
ing a deeper understanding of language-specific vocal nuances.

We meticulously organize these speaker embeddings and
their corresponding cosine similarities into dedicated files. This
systematic organization not only improves the accessibility of
the data but also creates a robust framework for comparative
analysis across different languages. By arranging the data in
this manner, we ensure that the vocal features can be easily re-
trieved and analyzed for further research purposes.

Utilizing this approach, we are able to identify and extract
speaker IDs from the dataset effectively. The speaker ID pro-
vides a unique identifier for each speaker, enabling us to track
and analyze individual vocal characteristics across different lin-
guistic contexts. This is particularly valuable in speech-to-
speech translation research, where understanding and preserv-
ing individual speaker characteristics is essential for generating
accurate and natural translations.

The process of extracting speaker embeddings and comput-
ing their cosine similarities, therefore, plays a pivotal role in our
methodology. It not only aids in the accurate identification of
speakers but also contributes significantly to our understanding
of how vocal features vary across languages. This understand-
ing is crucial for the development of advanced speech-to-speech
translation systems that are capable of handling the complexi-
ties inherent in human speech.

Figure 3: unit-hifigan based, voice style transfer model at the
training stage and inference stafe.

3.3. Unit2Wav synthesis

In the third part of our method, we focus on synthesizing speech
in a different language from the voice and translating discrete
representations. This presents two primary challenges: firstly,
maintaining high audio quality after dataset denoising, and sec-
ondly, addressing the tonal differences between matched audio

in different languages, which create a gap that complicates the
direct computation of Mel-spectral loss.

To tackle these issues, as shown in Figure 3, we employ a
unit-based variant of HiFi-GAN [21], termed “unit-HiFiGAN”.
The structure is inspired mainly by HiFi-GAN, which excels in
handling signals of varying periodicity in speech by employing
multiple smaller sub-discriminators. These sub-discriminators
individually process different periodic patterns, resulting in su-
perior performance. Additionally, this model architecture al-
lows for parallel processing of these patterns, enhancing com-
putational efficiency. Controllable Text-to-Speech (TTS) has
developed in two main directions: global and fine-grained style
transfer [22, 23, 24, 25]. Global style transfer, encapsulating
overall speech attributes into a single embedding, contrasts with
fine-grained style transfer, which captures local prosodic fea-
tures but faces alignment challenges. Global style transfer is
more adaptable to non-parallel scenarios, so we leverage it in
our S2ST framework following [23].

Our innovation primarily lies in two areas. First, addressing
the challenge of preserving high audio quality post-denoising,
our model can be trained on high-quality monolingual datasets.
This initial phase establishes a foundation for quality. Subse-
quently, we train the model and discriminator predictors on a
mixed dataset, further refining the system.

Regarding the second challenge of tonal differences be-
tween matched audio in various languages, our approach in-
cludes predicting the speaker (spk) attributes from the outputs
processed by the reference (ref) encoder. We then calculate a
loss function based on this prediction, aiming to minimize the
non-timbral features in the ref encoder’s output. Acknowledg-
ing the typically deeper tones in Spanish speech, we input and
output both Spanish-to-English and English-to-Spanish transla-
tions to mitigate potential model biases. Additionally, we in-
tegrate a pitch predictor and an unvoiced/voiced predictor into
our system.

These strategic innovations in our method not only address
the inherent challenges in cross-lingual speech synthesis but
also push the boundaries of what’s achievable in terms of au-
dio quality and linguistic versatility.

4. Experiments
4.1. Experimental setup

4.1.1. Dataset setup

In addition to the movie dataset we introduced, to enhance the
audio quality, we also utilize the supplementary training mate-
rial from [20, 26, 27, 28], which comprises over 400K hours
of high-quality audio. As they lack paired translated audio, we
employ the same audio during training as a substitute for trans-
lated audio. We use English as the target language and Spanish
as the reference language.

4.1.2. Human evaluation protocol

To measure expressivity preservation, we adopt the protocols
[3] proposed, focusing on four specific aspects of expressive-
ness. This system, based on established methodologies in the
field, categorizes expressiveness into four core aspects: empha-
sis, intonation, rhythm, and emotion. These categories were se-
lected based on internal qualitative research, which pinpointed
them as critical for preserving expressiveness in speech transla-
tion.

Among these aspects, emphasis, intonation, and rhythm are



related to more localized or prosodic features of speech. These
elements play a crucial role in conveying the subtleties of spo-
ken language. On the other hand, emotion is treated as the most
“global” aspect, encompassing the overall feeling or mood con-
veyed by the speech. It’s important to note that while we as-
sess naturalness in our translations, it is conducted in a separate
study and thus not included as a core expressiveness aspect in
this experimental setup.

To evaluate emotion expression and objectively rate the per-
formance of our model across the identified expressivity as-
pects, we recruit 10 participants to assess multiple pairs of
results containing our method and baseline outcomes through
questionnaires. Each pair is evaluated using four different
scores, and the average rating across all 10 participants is cal-
culated. Their evaluations are crucial in providing an unbiased
assessment of our model’s capability to preserve expressivity in
speech-to-speech translation.

4.1.3. Model setup

In our expressive S2ST system, we use the open-source S2T
model in the Fairseq toolkit [29, 30, 31]. We use the pretrained
Es-En model they provide.

As for the unit-to-wav model, our model configuration uses
several key parameters during training. We train from scratch,
with settings of a learning rate of 2e−4 and learning rate de-
cay of 0.999, inverse square root learning rate scheduler with
warmup, adam optimizer with specific beta values of (0.8,0.99),
0.1 dropout probability in reference encoder and prosody en-
coder. These parameter choices crucially influenced the model’s
training behavior.

For our baseline model, we utilize a vanilla implementation
of the HiFi-GAN in [32], trained on the LJ Speech dataset [28].
This choice of baseline provides a reliable foundation for eval-
uating our model’s performance, given the HiFi-GAN’s proven
effectiveness in generating high-quality speech audio.

4.2. Main Results

4.2.1. Preserve emotion

Our experimental results provide compelling evidence of the su-
periority of our model over traditional vanilla unit-based TTS
systems, particularly in the realms of emphasis, intonation,
and rhythm. These aspects are critical in achieving natural-
sounding, expressive speech synthesis, a goal that has remained
elusive in many existing TTS technologies.

Table 1: The Cascade system’s performance on various aspects
of speech

System Emotion Emphasis Intonation Rhythm

Vanilla TTS 2.034 2.684 2.462 2.297
Holistic Cascade 3.576 3.257 3.173 3.562

Emotion and emphasis: The performance of our model
in replicating the emotion and the emphasis in the speech was
markedly superior. This was quantitatively measured using a
set of metrics designed to capture the degree of emphasis cor-
rectly copied from the source material. Our model showed an
improvement of 21% over traditional vanilla TTS, indicating a
more dynamic and contextually accurate speech synthesis. Re-
garding the baseline, due to the lack of additional linguistic in-
formation in discrete units, the speech tones are nearly uniform.

Intonation: Intonation, a vital component in conveying
emotions and questions in speech, was another area where our
model excelled. Using a specialized intonation accuracy index,
we observe that our model’s ability to mimic the natural into-
nation patterns of human speech surpassed that of vanilla TTS
by 29%. This improvement is indicative of the model’s sophis-
ticated understanding of speech patterns and its ability to gen-
erate more human-like, expressive speech.

Rhythm: In terms of replicating the natural rhythm of
speech, our model again outperformed the vanilla unit-based
TTS. The rhythm conformity score, which measures how
closely the synthesized speech matches the rhythm of natural
speech, was 55% higher in our model. This result underscores
our model’s advanced capability in capturing and reproducing
the subtle temporal characteristics of speech, which are essen-
tial for naturalness and expressiveness.

These results were further corroborated by subjective eval-
uations, where a panel of listeners rated our model’s outputs
as significantly more natural and expressive compared to those
generated by the vanilla TTS system.

4.2.2. Accuracy

Table 2: The BLEU of different system’s output compared to the
English groundtruth. “S2ST” denotes for using the translation
result as the input of TTS/Unit2Wav.

System S2ST GT input

Vanilla TTS 29.2 81.0
Ours 28.3 74.6
GT - 78.2

To measure the ability of our model to keep the high audio
quality while maintain both emotional expressions, we conduct
Automatic Speech Recognition by Azure 1 on the translations
generated by our model and compare them to the ground truth
results. The BLEU score achieved 74.6, whereas the ground
truth yielded a BLEU score of 78.2. These results demonstrate
the superior performance of our approach in terms of both flu-
ency and accuracy in preserving the original content. The base-
line vanilla TTS exhibits a higher BLEU score, attributed to the
fact that the LJ Speech training set comprises passages read by
a single speaker. In contrast, our movie dataset consists of nu-
merous noisy clips. This disparity is reasonable and highlights
a limitation of our method. Future research endeavours could
work on this challenge.

5. Conclusion
Direct S2ST encounters a challenge due to data scarcity. To
address this, we introduce the first training dataset for ex-
pressive speech translation and propose a model for emotion
translation, advancing S2ST. Our approach integrates pitch and
global style transfer, facilitating real-time improvements with-
out relying on text intermediaries. This novel method promises
high-quality translations while preserving stylistic fidelity to the
source speech. The dataset comprises paired Spanish-English
data from movie and TV show dialogues, capturing nuanced
emotional variations often overlooked in conventional speech
synthesis datasets. These contributions collectively push the
boundaries of direct S2ST, paving the way for future develop-
ments in expressive speech synthesis and style transfer.
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